Abstract

A novel extraction technique i.e. hydrophobic magnetic nanoparticle (MNP)-assisted in situ supramolecular solvent (SUPRAS) microextraction was proposed, and it was applied for the analysis of sulfonamides (SAs) and fluoroquinolones (FQs) in aqueous samples, coupled with high performance liquid chromatography-UV detection (HPLC-UV). In this extraction method, hexafluoroisopropanol-mediated salt-free catanionic surfactant based SUPRAS in situ microextraction was initially carried out; then, the SUPRAS was quickly adsorbed by the hydrophobic magnetic nanoparticles and gathered by an external magnetic field. This can greatly shorten the separation time and overcome the dependence on centrifugation, and also perform a secondary extraction of free analytes (not extracted by SUPRAS) from water samples. The magnetic separation ability of different hydrophobic MNPs was evaluated by adsorbing supramolecular aggregates from the water sample. The effective parameters affecting the extraction efficiency of the analytes were investigated and optimized using the one variable at a time method. About 3 min was required to realize the extraction of analytes with an enrichment factor (EF) of 12-53 for SAs and 79-118 for FQs. Compared with the centrifugation-assisted SUPRAS microextraction, the hydrophobic MNP-assisted SUPRAS microextraction obtained much better extraction and preconcentration efficiency. The proposed novel extraction method with HPLC-UV provided LODs of 0.21-0.76 ng mL-1 for SAs and 0.10-0.18 ng mL-1 for FQs. Good linearity was obtained with correlation coefficients ranging from 0.9962 to 0.9999. The intra- and inter-day recoveries of the target antibiotics were in the range of 92.0-111.3% with RSD% below 10.4%. The method was successfully applied to determine SAs and FQs in real water samples, such as lake water, river water, reservoir water, and wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call