Abstract

Isolating high-purity nucleic acids from complex biological samples is critical to nucleic acid analysis. In the current work, four hydrophobic magnetic deep eutectic solvents (HMDESs) were firstly designed and prepared for the extraction of DNA. The conformations of the HMDESs were simulated and H-bonding interactions in the HMDESs were investigated by density functional theory (DFT) calculation. Characterization of HMDESs’ physical (magnetism, density, viscosity and hydrophobicity), and thermal (melting point and decomposition temperature) properties were conducted. Single stranded DNA (ssDNA), double stranded DNA (dsDNA) and DNA sodium salts (stDNA) that were extracted by HMDESs could be quickly collected by an external magnet. Three auxiliary extraction methods, including vortex auxiliary extraction, mechanical shaking auxiliary extraction and ultrasonic auxiliary extraction, were introduced to extract DNA with HMDESs and the extraction efficiencies were evaluated using NanoDrop. Factors that could impact the DNA extraction process, such as HMDESs volume, temperature, time, and pH, were systematically investigated via single-factor experimental analysis. The proposed extraction method can successfully extract DNA from complex matrices and E. coli cell lysate. The DNA extracted by using HMDESs are well suitable for PCR amplifications. The interaction and corresponding binding sites between HMDESs and DNA were investigated by FT-IR and DFT calculation. The extraction mechanisms were discussed: hydrophobic interaction and electrostatic interaction are two main forces driving DNA extraction by HMDESs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call