Abstract

Wearable devices have become a research hotspot due to their prospective applications in wireless sensor networks and the Internet of Things. However, these technologies demand the generation of new power sources, which are efficient, flexible, sustainable, and stable. Triboelectric nanogenerators (TENGs), as a new type of power supply, have been widely studied for environmental energy harvesting and self-powered sensing; however, they have vastly limited stretchability, flexibility, and stability. For the first time, we report a single-electrode TENG based on hydrophobic ionic liquid gel, which is simultaneously transparent (average transmittance of 89% for visible light), stretchable (400%), and has super-stability-up to 3 months in various weather conditions (from -25 to +60 °C and humidity up to 80%). This TENG was used to power a vast range of flexible electronics, including 30 green light-emitting diodes (LEDs), an arch-shaped finger-bending sensor, and a transparent keyboard. This work provides a creative platform to access the next-generation sustainable wearable electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.