Abstract

Most proteins and large polypeptides have hydrophobic regions at their surface. These hydrophobic "patches" are due to the presence of the side chains of hydrophobic or nonpolar amino acids such as phenylalanine, tryptophan, alanine, and methionine. These surface hydrophobic regions are interspersed between more hydrophilic or polar regions and the number, size, and distribution of them is a specific characteristic of each individual protein. Hydrophobic Interaction Chromatography (HIC) is a commonly used technique that exploits these hydrophobic features of proteins as a basis for their separation even in complex biological mixtures (Queiroz et al., J Biotechnol 87:143-159, 2001; Eisenberg and McLachlan, Nature 319:199-203, 1986). In general, the conditions under which hydrophobic interaction chromatography is used are relatively mild and "protein friendly" resulting in good biological recoveries. Hydrophobic binding is relatively strong and is maintained even in the presence of chaotropic agents, organic solvents, and detergents. For these reasons, this technique has a widespread use for the purification of proteins and large polypeptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.