Abstract

The bindings of detemir [LysB29(Nε-tetradecanoyl)des(B30)-insulin] with two highly homologous albumins, HSA (human serum albumin) and BSA (bovine serum albumin), were investigated through CD, spectrofluorophotometry, and molecular docking analysis. The absence of any tryptophanyl residue in detemir makes albumin binding study possible by exclusive tryptophanyl spectral quenching at 340nm (λem=296nm). The interactions found to be static (Kq>1010M-1s-1) with Stern-Volmer constants ≈103M-1. The observed ΔG 0 that was negative in all cases concludes the reactions were spontaneous. Domains I and III of an albumin unfold with 5.0M urea at pH 7.4, although domain II remains intact. Significant decreases in ΔH 0 and ΔS 0 were due to unfolding explicit that detemir binding may involve domains I and III of albumins. Temperature-dependent changes in binding were higher in HSA than BSA but after unfolding such changes were very less, further indicating the role of domains I and III in detemir binding. Pro28 and Tyr26 of insulin were found to be interacting with Arg114 and Val116 of HSA domain I, while myristate segment of detemir binds to Lys519 of domain III. Interactions seem to be predominantly hydrophobic and entropy driven. Although detemir binds to albumin through myristate, the peptide part shows involvement in binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.