Abstract

The pursuit of highly efficient and stable wide-band gap (WBG) perovskite solar cells (PSCs), especially for monolithic perovskite/silicon tandem devices, is a key focus in achieving the commercialization of perovskite photovoltaics. In this study, we initially designed poly(ionic liquid)s (PILs) with varying alkyl chain lengths based on density functional theory calculations. Results pinpoint that PILs with longer alkyl chain lengths tend to exhibit more robust binding energy with the perovskite structure. Then we synthesized the PILs to craft a hydrophobic hydrogen-bonded polymer network (HHPN) that passivates the WBG perovskite/electron transport layer interface, inhibits ion migration and serves as a barrier layer against water and oxygen ingression. Accordingly, the HHPN effectively curbs nonradiative recombination losses while facilitating efficient carrier transport, resulting in substantially enhanced open-circuit voltage (Voc ) and fill factor. As a result, the optimized single-junction WBG PSC achieves an impressive efficiency of 23.18 %, with Voc as high as 1.25 V, which is the highest reported for WBG (over 1.67 eV) PSCs. These devices also demonstrate outstanding thermostability and humidity resistance. Notably, this versatile strategy can be extended to textured perovskite/silicon tandem cells, reaching a remarkable efficiency of 28.24 % while maintaining exceptional operational stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.