Abstract

Normally, a polymer network swells in a good solvent to form a gel but the gel shrinks in a poor solvent. Here, an abnormal phenomenon is reported: some hydrophobic gels significantly swell in water, reaching water content as high as 99.6 wt%. Such abnormal swelling behaviors in the nonsolvent water are observed universally for various hydrophobic organogels containing omniphilic organic solvents that have a higher affinity to water than to the hydrophobic polymers. The formation of a semipermeable skin layer due to rapid phase separation, and the asymmetric diffusion of water molecules into the gel driven by the high osmotic pressure of the organic solvent-water mixing, are found to be the reasons. As a result, the hydrophobic hydrogels have a fruit-like structure, consisting of hydrophobic skin and water-trapped micropores, to display various unique properties, such as significantly enhanced strength, surface hydrophobicity, and antidrying, despite their extremely high water content. Furthermore, the hydrophobic hydrogels exhibit selective water absorption from concentrated saline solutions and rapid water release at a small pressure like squeezing juices from fruits. These novel functions of hydrophobic hydrogels will find promising applications, e.g., as materials that can automatically take the fresh water from seawater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.