Abstract

Hydrophobic composite membranes for dehydrating aqueous alcohol mixtures by pervaporation were investigated. It was suited for applications at high temperatures and for feed mixtures of water and alcohols with high number of carbon atoms. With increasing operating temperatures, pervaporation data indicated simultaneous increase in permeation flux and concentration of water in permeate. At 70°C and for a feed mixture of 10wt% water and 90wt% ethanol, the composite poly(2,6-dimethyl-1,4-phenylene oxide) membrane delivered a high flux of 1333g/(m2h) and a high permeate content of 96.4wt% H2O. For a feed with higher water content, the membrane performance was further enhanced. The microstructure of the selective layer was probed with positron annihilation lifetime spectroscopy at varying temperatures. A bimodal free volume distribution was obtained, which described different shifts of free volume as temperature increased: a shift of smaller free volume to a region of much smaller free volume and a shift of bigger free volume to a region of much bigger free volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.