Abstract

The evolution of contemporary electronics urgently requires the use of versatile electromagnetic interference (EMI) shielding materials in complex environments. Interlayer polydimethylsiloxane (PDMS)/Fe3O4@multiwalled carbon nanotubes (MWCNTs) foams were prepared by a simple physical foaming method with excellent flexibility and electromagnetic wave absorption. The bottom nickel aramid paper (NiP) layer creates a dense conductive network by chemical plating technology, which ensures excellent EMI effectiveness. The upper carbon black (CB)/Fe3O4 layer further improves the absorption performance via conductive loss and magnetic loss. With the effective layout of the impedance matching layer, absorbing layer, and conductive shielding layer, the CB/Fe3O4-PDMS/Fe3O4@MWCNTs-NiP composite material achieves an EMI shielding effectiveness (EMI SE) of 61.7 dB and an absorption coefficient of 0.58 at X-band. In addition, the composite foam provides photothermal conversion and hydrophobicity due to the effective stacking of PDMS and CB/Fe3O4. Thus, the multifunctional composite foam presents a broad range of possible applications, benefiting EMI shielding as well as other specific areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call