Abstract
The evolution of contemporary electronics urgently requires the use of versatile electromagnetic interference (EMI) shielding materials in complex environments. Interlayer polydimethylsiloxane (PDMS)/Fe3O4@multiwalled carbon nanotubes (MWCNTs) foams were prepared by a simple physical foaming method with excellent flexibility and electromagnetic wave absorption. The bottom nickel aramid paper (NiP) layer creates a dense conductive network by chemical plating technology, which ensures excellent EMI effectiveness. The upper carbon black (CB)/Fe3O4 layer further improves the absorption performance via conductive loss and magnetic loss. With the effective layout of the impedance matching layer, absorbing layer, and conductive shielding layer, the CB/Fe3O4-PDMS/Fe3O4@MWCNTs-NiP composite material achieves an EMI shielding effectiveness (EMI SE) of 61.7 dB and an absorption coefficient of 0.58 at X-band. In addition, the composite foam provides photothermal conversion and hydrophobicity due to the effective stacking of PDMS and CB/Fe3O4. Thus, the multifunctional composite foam presents a broad range of possible applications, benefiting EMI shielding as well as other specific areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.