Abstract

In this study, a hydrophobic coating on glass surfaces was fabricated by application of a silicone oil lubricant and activated using a microwave atmospheric plasma jet. Optimization of the treatment was done by variation of the working gas flow rates, input microwave power and plasma treatment time, based on contact angle measurements. In comparison with the untreated glass (37.6°), results show that at best discharge conditions of 600W microwave power, 5/0.5 LPM Ar/N2 flow rate and 10s treatment time, the plasma-treated glass obtained a water contact angle of 105.7°. Surface energy of the glass also decreased from 45.07mN/m for the untreated to 27.97mN/m after plasma treatment. Atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy results suggest that increased root-mean-square roughness and introduction of hydrophobic species may have been responsible for the hydrophobicity of the glass surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.