Abstract

AbstractBombyx mori silk fibroin (SF) is a very versatile biopolymer due to its biocompatibility and exceptional mechanical properties which make possible its use as a functional material in several applications. SF can be modified with a large variety of chemical approaches which endow the material with tailored chemical–physical properties. Here, a systematic investigation of different routes is reported to graft long alkyl chains on SF based on both liquid‐ and solid‐phase, aiming to modulate its hydrophobic behavior. The liquid phase method involves direct activation of SF tyrosine residues via diazo coupling and cycloaddition reactions, generating hydrophobic materials insoluble in any common solvent. The solid phase approach consists of the chemical modification of drop‐casted SF films by esterification of hydroxyl groups of serine, threonine, and tyrosine SF residues with acyl chlorides of fatty acids. For the solid‐state functionalization, a new class of hydrophobic pendant groups is synthesized, based on triple esters of gallic acid anhydrides, that are reacted with the biopolymer to further enhance its resulting hydrophobic features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.