Abstract

Hydrophobic binding properties of purified bovine gallbladder mucin were studied by fluorescence spectroscopy using 1-anilino-8-naphthalene sulfonate (ANS) and N-phenyl-1-naphthylamine. The purified glycoprotein contained 75.5%, dry weight, as carbohydrate, 16.3% as protein, and 3.7% as sulfate; Mr = 2.2 X 10(6) was estimated by chromatography on Sephacryl S-500. Mucin contained a large number of low-affinity binding sites for these hydrophobic ligands. The dissociation constant, KD of mucin-ANS binding was 2.7 X 10(-5); each mucin molecule had approximately 42 binding sites for ANS. These binding sites were deduced to be on the unglycosylated portion of the protein core, as Pronase digestion completely eliminated binding. Reduction of mucin with 2-mercaptoethanol increased the fluorescence yield by formation of subunits with increased binding sites for the ligand. Increasing NaCl concentration (0.125 to 2.0 M) and decreasing pH (9 to 3) progressively increased fluorescence with the charged ligand ANS, suggesting that the binding site may have acidic groups which are shielded at high ionic strength or low pH. The fluorescent yield with N-phenyl-1-naphthylamine, an uncharged ligand, was an order of magnitude higher than with ANS. Bilirubin and bromosulfophthalein inhibited mucin-induced ANS fluorescence, but bile acids did not. Gallbladder mucin contains hydrophobic binding domains in the nonglycosylated peptide core that are involved in polymer formation and binding of biliary lipids and pigment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.