Abstract

Counterfeited perfumes mixed with inexpensive additives for commercial purposes pose a great threat to cosmetic market competition and human health. Herein, a 24-element, solid-state colorimetric sensor array employing chemo-responsive dye inks for accurate discrimination of a variety of fragrance bases and "sniffing out" real perfumes from adulterated samples was first reported. The physiochemical robustness and gas response kinetics of the sensor array were optimized with the streamlined design of the channel geometry and hydrophobic modification of the sensor substrate. A unique and distinguishable color change profile was obtained within 2 min exposure of diluted vapor that enabled clear fingerprinting of chemically similar perfume samples. Four commercial perfume products were successfully distinguished and categorized according to their similarity to relevant perfume bases using chemometric methods including hierarchical clustering and principal component analysis. The sensor array also allows the discrimination of ethanol-diluted fragrance bases from the pristine sample, revealing its potential for quality assurance of perfumes and other cosmetics. Such easy-to-use, disposable, and miniaturized chemical sensing detectors therefore prove exceptionally valuable for fast analysis of luxuries such as perfumes and other industrial products with complex chemical compositions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.