Abstract

Solar cells have been developed as a highly efficient source of alternative energy, collecting photons from sunlight and turning them into electricity. On the other hand, ultraviolet (UV) radiation has a substantial impact on solar cells by damaging their active layers and, as a result, lowering their efficiency. Potential solutions include the blocking of UV light (which can reduce the power output of solar cells) or converting UV photons into visible light using down-conversion optical materials. In this work, we propose a novel hydrophobic coating based on a polydimethylsiloxane (PDMS) layer with embedded red emitting Y2O3:Eu3+ (quantum yield = 78.3%) particles for UV radiation screening and conversion purposes. The favorable features of the PDMS-Y2O3:Eu3+ coating were examined using commercially available polycrystalline silicon solar cells, resulting in a notable increase in the power conversion efficiency (PCE) by ~9.23%. The chemical and UV stability of the developed coatings were assessed by exposing them to various chemical conditions and UV irradiation. It was found that the developed coating can endure tough environmental conditions, making it potentially useful as a UV-protective, water-repellent, and efficiency-enhancing coating for solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.