Abstract

A novel guided bone regeneration (GBR) membrane was fabricated by an immersion precipitation of poly (glycolic-co-lactic acid) (PLGA)/Pluronic F127 solution impregnated in an electrospun polycaprolactone (PCL)/Tween 80 nanofiber mesh. The prepared PCL/Tween 80 nanofiber mesh-embedded PLGA/Pluronic F127 membrane (hydrophilized PCL/PLGA hybrid membrane) had nano-size pores on the top side (which can prevent from fibrous connective tissue infiltration but allow permeation of oxygen and nutrients) and micro-size pores on the bottom side (which can improve adhesiveness with bone). From the comparisons of mechanical properties (tensile and suture pullout strengths), model nutrient (FITC-labeled bovine serum albumin) permeability, and bone regeneration behavior using a rat model (skull bone defect) of the hybrid membrane with those of PLGA/Pluronic F127 membrane (asymmetrically porous, hydrophilized PLGA membrane), PCL/Tween 80 nanofiber mesh (electrospun, hydrophilized PCL nanofiber mesh), and a commercialized GBR membrane, Bio-Gide (collagen type I/III membrane), it was observed that the PCL/PLGA hybrid membrane seems to be highly desirable as a GBR membrane for the selective permeability caused by its unique morphology and osteoconductivity provided by several tens micro-size pores of the bottom side as well as the excellent mechanical strengths by the hybridization of porous PLGA membrane and PCL nanofiber mesh.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.