Abstract

Two series of multiblock copolymers based on poly(arylene ether sulfone)s were developed and evaluated for use as proton exchange membranes (PEMs). The multiblock copolymers were synthesized by a coupling reaction between phenoxide terminated fully disulfonated poly(arylene ether sulfone) (BPSH100) and decafluorobiphenyl (DFBP) or hexafluorobenzene (HFB) end-capped unsulfonated poly(arylene ether sulfone) (BPS0) as hydrophilic and hydrophobic blocks, respectively. The highly reactive nature of DFBP and HFB allowed the coupling reactions to be accomplished under mild reaction conditions (e.g., <105°C). The low coupling temperatures prevented possible ether–ether exchange reactions which can cause a loss of order due to randomization of the hydrophilic–hydrophobic sequences. The multiblock copolymers produced tough and ductile membranes and their fundamental properties as PEMs were explored. They showed enhanced conductivities under fully hydrated conditions when compared with a random BPSH copolymer with a similar IEC. These copolymers also showed anisotropic swelling behavior, whereas the random copolymers were isotropic. The synthesis and fundamental properties of the multiblock copolymers are reported here and the systematic fuel cell properties and more detailed morphology characterization will be provided elsewhere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call