Abstract

Preventing methane evolution is a key issue to guarantee stable hydrogen production in microbial electrolysis cell (MEC). In this study, low-cost hydrophilic porous materials, such as non-woven cloth (NWC) and polyvinylidenedifluoride (PVDF), were investigated as alternatives to proton exchange membrane (PEM) in MEC. The MEC with a NWC (NWC-MEC) improved the current density and hydrogen production rate (HPR) of 262.5±10 A m−3 and 2.5±0.2 m3 m−3 d−1, respectively, due to its lower pH gradient (0.37) and ion transport resistance (0.9±0.1 mΩ m2). Hydrogen production in NWC-MEC (from 2.5 to 2.1 m3 m−3 d−1) and PVDF-MEC (from 2.2 to 2.0 m3 m−3 d−1) showed more stable performance compared to PEM-MECs (from 2.2 to 1.6 m3 m−3 d−1) during 30 days of operation. Moreover, results of anodic microbial community analysis indicate that the growth of methanogens of NWC-MEC and PVDF-MEC was effectively inhibited in 30 days.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.