Abstract

The levels of hydration of several hydrophilic polymers (hydrogels) varied greatly. Starch-based polymers had the fastest rate of hydration (<2 hours), followed by a propenoate-propenamide copolymer. Polyacrylamide materials required 4 to 8 hours to become fully hydrated. Maximum water retention in distilled water varied from 400 to 57 g of water per gram of dry material. All hydrogels retained less water in the presence of metal ions or fertilizers in the soaking solution, with substances releasing Fe+2 being the most detrimental. After exposure to fertilizers and ions, the water-holding capacity of a polyacrylamide with a high degree of cross linkage, but not that of hydrogels of the other structures, was fully recovered by subsequently soaking in distilled water. Pots amended with a polyacrylamide polymer but without Micromax (a micronutrient source) reached maximum water retention after six irrigations, while those with Micromax required 10 irrigations to reach peak water retention. The amounts of water being held in pots decreased after repeated fertilization. Medium volume increased with increasing levels of the polyacrylamide Supersorb C (0, 2, 4, or 6 g/pot). Micromax incorporated in medium amended with Supersorb C caused a depression in volume. Medium bulk density, total water retention, and water retention per unit volume of medium were increased by the incorporation of the hydrogel, regardless of the presence of Micromax. Noncapillary porosity measured at container capacity in medium amended with Micromax progressively decreased as the amount of hydrogel increased, but remained unchanged in medium without Micromax. Repeated drying and dehydration of the medium resulted in reduced water retention and increased noncapillary pore space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call