Abstract
Rapid and selective enrichment of phosphopeptides from complex biological samples is essential and challenging in phosphorylated proteomics. In this work, for the first time, niobium ions were directly immobilized on the surface of polydopamine-coated magnetic microspheres through a facile and effective synthetic route. The Fe3O4@polydopamine-Nb5+ (denoted as Fe3O4@PD-Nb5+) microspheres possess merits of high hydrophilicity and good biological compatibility, and demonstrated low limit of detection (2fmol). The selectivity was also basically satisfactory (β-casein:BSA=1:500) to capture phosphopeptides. They were also successfully applied for enrichment of phosphopeptides from real biological samples such as human serum and nonfat milk. Compared with Fe3O4@PD-Ti4+ microspheres, the Fe3O4@PD-Nb5+ microspheres exhibit superior selectivity to multi-phosphorylated peptides, and thus may be complementary to the conventional IMAC materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.