Abstract

Hydrophilic molecularly imprinted resorcinol-formaldehyde-melamine resin (MIRFM) is synthesized in water and shows excellent molecular recognition in aqueous matrices. The double functional monomers resorcinol and melamine, and the cross-linker formaldehyde, are all hydrophilic, and then the hydrophilic groups (such as hydroxyls, imino groups, and ether linkages) can be introduced into MIRFM, which make the material compatible with aqueous samples. The general principle is demonstrated by the synthesis of MIRFM using sulfanilamide as a dummy template for the selective recognition to sulfonamides (SAs) in milk samples. Resorcinol and melamine can interact with the template mainly by hydrogen bonding and π-π interaction, which makes MIRFM and the analytes have strong affinity. Besides, melamine can improve the rigidity of MIRFM and accelerate the polymerization process, so there is no need to add base or acid as a catalyst, which guarantees the success of molecular imprinting. MIRFM shows higher recovery and improved purification effect for SAs, in comparison to silica, HLB, C18, and SCX. Because of its excellent hydrophilicity and specificity, MIRFM is promising to be applied in biological, environmental, and clinical fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call