Abstract

The acute cardiotoxicity induced by Veratrum nigrum (VN) is explored by analyzing heart tissue metabolic profiles in mouse models and applying reversed-phase liquid chromatography mass spectrometry and hydrophilic interaction liquid chromatography mass spectrometry that are based on ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. An animal model of acute heart injury was established in mice via intra-gastric administration of VN. Then, electrocardiogram and echocardiograph monitoring of cardiac function and pathological examination were performed on mice in both the control and VN groups, and it was verified that acute heart injury was caused. Meanwhile, comparing the results of the control and VN groups, we detected 36 differential endogenous metabolites of heart tissue, including taurine, riboflavin, purine and lipids, which are related to many possible pathways such as purine metabolism, taurine and hypotaurine metabolism and energy metabolism. Our study provides a scientific approach for evaluating and revealing the mechanisms of VN-induced cardiotoxicity via the metabolomic strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call