Abstract

The biocompatibility and adaptability of hydrogels make them ideal candidates for use as artificial tendons and muscles in clinical applications, where both muscle-like strength and low hysteresis are essential. However, achieving a balance between a high strength and low hysteresis in hydrogels remains a significant challenge. Herein, we demonstrated a self-assembly process of heterogeneous hydrogels to meet the dilemma. And the hydrogels are composed of both hydrophilic and hydrophobic polymers. The hydrophilic network absorbs water, causing phase separation into a water-rich phase and a water-poor phase, while hydrophobic polymers and entanglement of the network arrest phase separation. Our results demonstrated that these hydrogels achieve remarkable mechanical properties, with a strength of 848.8 kPa, a low energy loss of 19.6 kJ/m3, and minimal hysteresis (0.046) during loading-unloading cycles. The reinforcing mechanisms underlying these properties are attributed to crystallization, molecular entanglement, and chain rearrangement induced by stretching. Furthermore, the combination of hydrophilic and hydrophobic networks is exceedingly rare in reported hydrogels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.