Abstract
The wettability of graphene is critical for numerous applications but is very sensitive to its surface cleanness. Herein, by clarifying the impact of intrinsic contamination, i.e., amorphous carbon, which is formed on the graphene surface during the high-temperature chemical vapor deposition (CVD) process, the hydrophilic nature of clean graphene grown on single-crystal Cu(111) substrate was confirmed by both experimental and theoretical studies, with an average water contact angle of ∼23°. Furthermore, the wettability of as-transferred graphene was proven to be highly dependent on its intrinsic cleanness, because of which the hydrophilic, clean graphene exhibited improved performance when utilized for cell culture and cryoelectron microscopy imaging. This work not only validates the intrinsic hydrophilic nature of graphene but also provides a new insight in developing advanced bioapplications using CVD-grown clean graphene films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.