Abstract

Detailed analysis of an interesting poly(methacrylic acid) (PMAA) brush structure in water of a diblock copolymer [(Et(2)SB(m)-b-(MMA)(n), where Et(2)SB is diethylsilacyclobutane] monolayer reported previously was performed by X-ray and neutron reflectometry and indicated that the hydrophilic layer formed with a relatively long PMAA chain is not a simple layer but is divided into two layers, that is, a "carpet"-like dense PMAA layer near the hydrophobic layer and a polyelectrolyte brush layer. The hydrophilic chain length dependence of the diblock copolymer monolayer was analyzed using m:n = 30:x polymer samples, especially of the PMAA double layer structure. With the increase in PMAA chain length in polymer samples, a carpet layer is mainly formed up to n approximately 50. With further increase in the PMAA chain length beyond n approximately 50, a well-defined brush layer appears. On the other hand, the variation in hydrophobic layer thickness with methacrylic acid unit is minimum at the critical PMAA length, that is, n approximately 50 under a constant surface pressure condition. It is strongly suggested that the two discrete layers contribute differently to surface pressure. Furthermore, from the comprehensive viewpoint, the major factor for brush formation was clarified not to be the absolute length of the PMAA chain, but the ratio of PEt(2)SB and PMAA chain length is an important factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.