Abstract

Graphitic carbon nitride (g-C3N4) has attracted great interest in photocatalysis and photoelectrocatalysis. However, their poor hydrophilicity poses a great challenge for their applications in aqueous environment. Here, we demonstrate synthesis of a hydrophilic bi-functional hierarchical architecture by the assembly of B-doped g-C3N4 nanoplatelets. Such hierarchical B-doped g-C3N4 material enables full utilization of their highly enhanced visible light absorption and photogenerated carrier separation in aqueous medium, leading to an excellent photocatalytic H2O2 production rate of 4240.3 μM g−1 h−1, 2.84, 2.64 and 2.13 times higher than that of the bulk g-C3N4, g-C3N4 nanoplatelets and bulk B doped g-C3N4, respectively. Photoanodes based on these hierarchical architectures can generate an unprecedented photocurrent density of 1.72 mA cm−2 at 1.23 V under AM 1.5 G illumination for photoelectrochemical water splitting. This work makes a fundamental improvement towards large-scale exploitation of highly active, hydrophilic and stable metal-free g-C3N4 photocatalysts for various practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call