Abstract

The interaction of 20-, 23-, and 25-hydroperoxy derivatives of cholesterol with various heme proteins, including the cholesterol side-chain-cleaving enzyme, cytochrome P-450scc, was studied by means of product and spectral analyses. Quasi-Fenton homolytic decomposition via intermediate alkoxy radicals appears to prevail during nonspecific interaction. Highly stereospecific hydroperoxide-driven hydroxylations suggest the absence of free radical species and are interpreted as resulting from a heterolytic type of peroxide decomposition or, alternatively, homolytic decomposition assuming proximal base effect to stabilize a putative intermediate alkoxy radical. Spectral aberrations during the early stages of the latter interaction indicate formation of a ternary iron-peroxo-substrate complex. Decomposition of this complex results in multiple product formation suggesting that peroxide cleavage reverts to regular homolytic decomposition upon denaturation of the enzyme. The implications of these observations for the mechanism of hydroxylation and oxidative carbon-carbon bond scission during enzymic side-chain cleavage of cholesterol are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.