Abstract
The profiles of non-volatile oxylipins of pea (Pisum sativum) seedlings were examined by gas chromatography–mass spectrometry after invitro incubation with α-linolenic acid. The 13-lipoxygenase/hydroperoxide lyase (HPL) products were predominant in the leaves, while the roots possess both 13- and 9-HPL products. Allene oxide synthase (AOS) and divinyl ether synthase (DES) products were not detected in the leaves or in the roots of any age. The HPL cascade produces a diversity of oxylipins, including the compounds (2E)-4-hydroxy-traumatic, (10E)-9,12-dihydroxy-10-dodecenoic and 9,12-dihydroxydodecanoic acids, as well as (2E)-4-hydroxy-2-nonenoic acid, which has not yet been detected in plants. Oxylipin patterns were altered by infection, water deficit, as well as by plant age. Infection caused the specific strong accumulation of azelaic (nonane-1,9-dioic) acid in the leaves. The azelaic acid content in the aged (14 and 18day-old) leaves was significantly higher than in the younger leaves. Water deficit induced the accumulation of (2E)-4-hydroxy-2-nonenoic acid and (2E)-traumatic acid in the roots. Results demonstrate that: (1) the HPL cascade is the predominant branch of the lipoxygenase pathway in pea seedlings; (2) the HPL products may have the regulatory role both in growth control and adaptation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.