Abstract

Hydroperoxide lyase (HPLS) activity in soybean (Glycine max) seed/seedlings, leaves, and chloroplasts of leaves required detergent solubilization for maximum in vitro activity. On a per milligram of protein basis, more HPLS activity was found in leaves, especially chloroplasts, than in seeds or seedlings. The total yield of hexanal from 13(S)-hydroperoxy-cis-9,trans-11-octadecadienoic acid (13S-HPOD) from leaf or chloroplast preparations was 58 and 66 to 85%, respectively. Because of significant competing hydroperoxide-metabolizing activities from other enzymes in seed/seedling preparations, the hexanal yields from this source were lower (36-56%). Some of the products identified from the seed or seedling preparations indicated that the competing activity was mainly due to both a hydroperoxide peroxygenase and reactions catalyzed by lipoxygenase. Different HPLS isozyme compositions in the seed/seedling versus the leaf/chloroplast preparations were indicated by differences in the activity as a function of pH, the K(m) values, relative V(max) with 13S-HPOD and 13(S)-hydroperoxy-cis-9,trans-11,cis-15-octadecatrienoic acid (13S-HPOT), and the specificity with different substrates. With regard to the latter, both seed/seedling and chloroplast HPLS utilized the 13S-HPOD and 13S-HPOT substrates, but only seeds/seedlings were capable of metabolizing 9(S)-hydroperoxy-trans-10,cis-12-octadecadienoic acid into 9-oxononanoic acid, isomeric nonenals, and 4-hydroxynonenal. From 13S-HPOD and 13S-HPOT, the products were identified as 12-oxo-cis-9-dodecenoic acid, as well as hexanal from 13S-HPOD and cis-3-hexenal from 13S-HPOT. In seed preparations, there was partial isomerization of the cis-3 or cis-9 into trans-2 or trans-10 double bonds, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.