Abstract

Unmanned aerial vehicles (UAVs) are often used in mission-critical applications, requiring a critical criterion in flight time. Unfortunately, severe power fluctuations, caused by specific flight patterns, degrade the deliverable capacity of the battery and hamper the flight time. A common approach to mitigating power fluctuations is to employ a hybrid energy storage system using a Li-ion battery with an ultracapacitor (UC). However, the conventional scheme poses inherent problems of low-energy density and power leakage due to the use of the UC and the supplementary hardware required for hybrid storage. In this article, we propose Hydrone, a reconfigurable battery architecture that maximizes the flight time of UAVs, overcoming the previous limitations. Hydrone addresses two key challenges that arise when hybrid energy storage is utilized in UAVs: 1) capacity loss and 2) power leakage. First, the proposed scheme compromises the capacity loss of hybrid storage by using a minimal capacity UC for use as a buffer to counteract the power fluctuations. Second, the power leakage of the hybrid battery is minimized by draining power from the UC only when it is necessary. To this end, the Hydrone architecture provides reconfigurability in hardware and offers two modes of battery operation, i.e., a battery-only mode and a hybrid mode. An appropriate operation is then selected at runtime depending on the flight situation and battery status. To switch modes, we employed a reinforcement learning-based switch control, reflecting the power fluctuation adequately on the flight and battery states. We implemented a hardware prototype to demonstrate the efficiency of Hydrone. Our extensive evaluation shows that the flight time of a UAV is prolonged up to 39% in our experiment setup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.