Abstract

Because of economic, population, and consumption patterns changes, the use of freshwater has increased significantly in the last 100 years. Notably, measurement is essential to encourage water conservation. Thus, the present study aims to evaluate the applicability of a thin-film resistive sensor (bend sensor) with different coatings for implementation in individualized water measurement systems. The motivation of this work is to propose a volumetric meter using flow control valves that ordinarily are already present in a building’s hydraulic installations. Methodologically, the following are presented: the system developed for the electromechanical and thermal characterization of the sensor, the sensor computational simulation performed using Ansys® software, and for the electronic circuit designed in LTSpice® software, the artificial neural network used to estimate the flow and the volume estimates from the trapezoidal pulses. The results obtained allowed us to assess that, taking into account the type of coating, the sensor coated with polyester has better behavior for the proposed hydrometer. In addition, this evaluation allowed us to conclude that the bend sensor demonstrated its feasibility to be used as a transducer of this novel type of volumetric meter and can be easily inserted inside a hydraulic component, such as a flow control valve, for example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.