Abstract

Opalinus clay is a candidate host formation for the geological disposal of nuclear wastes in Switzerland. The understanding of its long-term mechanical (M) and hydraulic (H) behaviour is an essential requirement for the assessment of its performance as a barrier against radionuclide transport. To study the HM response of Opalinus clay, a microtunnel, 13 m in length and 1 m in diameter, was excavated in that formation at the Mont Terri Underground Research Facility. The rock mass was equipped with sensors to measure the deformation and pore pressure in the rock mass during and after the excavation. A mathematical model that couples the equations of flow and mechanical equilibrium was developed to simulate the HM response of the rock mass. An anisotropic plastic constitutive relationship, based on a microstructure tensor approach, was incorporated in the model. Creep was also considered, as well as the anisotropy of permeability. It is shown that the model satisfactorily predicts the shape and extent of the excavation damage zone (EDZ), deformation, and pore pressure in the rock mass. It is also shown that anisotropy and creep play an important role in the HM response of the rock mass to excavation. The model was further used to simulate water injection tests performed at the test section in the microtunnel. The results show that EDZ, due to its high permeability, is a preferential groundwater flow path along the microtunnel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.