Abstract

The influence of the stress state on the evolution of suffusion failure is often neglected in the design of sandy gravel foundations containing a partially penetrating cut-off wall. A series of hydro-mechanical coupling experiments on such structures was carried out to investigate the influence using a newly designed apparatus. The results indicate that: (1) The stress state has a significant influence on the evolution of suffusion, which increases the critical suffusion hydraulic gradient dramatically. (2) The critical suffusion hydraulic gradient is linearly related to the confining pressure and to the penetration ratio, and a simple interpolation function for the critical hydraulic gradient was fitted based on the experimental results. (3) The eroded mass in the development of suffusion is nonuniform and intermittent. The evolution of suffusion is a complicated and iterative process involving fine particle migration, pores being clogged, flushing out of the clogged pores, and fine particle remigration. (4) Flow along the interface of sandy gravel and cut-off wall conforms to the piecewise-linear Darcy flow rule. The results will enhance the understanding of the influence of the stress state on the suffusion failure in sandy gravel foundations containing partially penetrating cut-off walls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call