Abstract
We present a comprehensive study of magnetohydrodynamic (MHD) waves and instabilities in a weakly-ionized system, such as an interstellar molecular cloud. We determine all the critical wavelengths of perturbations across which the sustainable wave modes can change radically (and so can their decay rates), and various instabilities are present or absent. Hence, these critical wavelengths are essential for understanding the effects of MHD waves (or turbulence) on the structure and evolution of molecular clouds. Depending on the angle of propagation relative to the zeroth-order magnetic field and the physical parameters of a model cloud, there are wavelength ranges in which no wave can be sustained as such. Yet, for other directions of propagation or different properties of a model cloud, there may always exist some wave mode(s) at all wavelengths (smaller than the size of the model cloud). For a typical model cloud, magnetically-driven ambipolar diffusion leads to removal of any support against gravity that most short-wavelength waves (or turbulence) may have had, and gravitationally-driven ambipolar diffusion sets in and leads to cloud fragmentation into stellar-size masses, as first suggested by Mouschovias more than three decades ago - a single-stage fragmentation theory of star formation, distinct from the then prevailing hierarchical fragmentation picture. The phase velocities, decay times and eigenvectors (e.g. the densities and velocities of neutral particles and the plasma, and the three components of the magnetic field) are determined as functions of the wavelength of the disturbances in a mathematically transparent way and are explained physically. Comparison of the results with those of nonlinear analytical or numerical calculations is also presented where appropriate, excellent agreement is found, and confidence in the analytical, linear approach is gained to explore phenomena difficult to study through numerical simulations. Mode splitting (or bifurcation) and mode merging, which are impossible in single-fluid systems for linear perturbations (hence, the term 'normal mode' and the principle of superposition), occur naturally in multifluid systems (as do transitions between wave modes without bifurcation) and have profound consequences in the evolution of such systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.