Abstract
We consider an electrically conducting fluid confined to a thin rotating spherical shell in which the Elsasser and magnetic Reynolds numbers are assumed to be large while the Rossby number is assumed to vanish in an appropriate limit. This may be taken as a simple model for a possible stable layer at the top of the Earth's outer core. It may also be a model for the thin shells which are thought to be a source of the magnetic fields of some planets such as Mercury or Uranus. Linear hydromagnetic waves are studied using a multiple scale asymptotic scheme in which boundary layers and the associated boundary conditions determine the structure of the waves. These waves are assumed to be of the form of an asymptotic series expanded about an ambient magnetic field which vanishes on the equatorial plane and velocity and pressure fields which do not. They take the form of short wave, slowly varying wave trains. The results are compared to the author's previous work on such waves in cylindrical geometry in which the boundary conditions play no role. The approximation obtained is significantly different from that obtained in the previous work in that an essential singularity appears at the equator and nonequatorial wave regions appear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.