Abstract

The influence of heat generation or absorption on the steady, two-dimensional flow of an electrically conducting fluid near a stagnation point on a stretching permeable surface with variable surface heat flux in the presence of a magnetic field is investigated. The governing system of partial differential equations describing the problem are converted into highly non-linear ordinary differential equations using similarity transformation. Numerical solutions of these equations are obtained using the fourth-order Runge-Kutta integration scheme with the shooting method. The effects of the heat generation or absorption parameter and the velocity ratio parameter on the velocity and the temperature are displayed graphically and discussed. The numerical values of the local skin-friction coefficient and the local Nusselt number for various values of physical parameters are presented through tables and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call