Abstract
The prototype linear spin-up problem consisting of a homogeneous viscous electrically conducting fluid confined between two infinite flat rotating electrically conducting plates in the presence of an applied axial magnetic field is studied in an effort to understand better the strength and nature of the coupling between a fluid and its rotating conducting container. It is assumed that the response time of the bounding plates to a magnetic perturbation is much less than the fluid spin-up time and that the plate conductivity is an arbitrary function of distance from the fluid-plate interface. The general Laplace transform solution is inverted and discussed for three special cases: magnetic diffusion regions thick compared with fluid depth during spin-up, arbitrary magnetic field strength and boundary conductance; magnetic diffusion regions thin, weak conductance, arbitrary field; magnetic diffusion regions thin, strong conductance, arbitrary field. In each case conductance of the boundary strengthens the coupling between fluid and boundary, thereby decreasing the spin-up time. The corresponding single plate analysis of Loper (1970a) is found to predict spin-up accurately only if the boundary conductance is much smaller than that of the fluid. The fluid possesses an oscillatory mode of spin-up if the magnetic diffusion regions are thin and boundary conductance is large. That is, the inviscid current-free core of fluid rotates significantly faster than the boundaries during a portion of the spin-up process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.