Abstract

We investigate the convective heat and mass transfer in a magnetohydrodynamic nanofluid flow through a porous medium over a stretching sheet subject to heat generation, thermal radiation, viscous dissipation and chemical reaction effects. We have assumed that the nanoparticle volume fraction at the wall may be actively controlled. Two types of nanofluids, namely Cu-water and Al2O3-water are studied. The physical problem is modeled using systems of nonlinear differential equations which have been solved numerically using the spectral relaxation method. Comparing the results with those previously published results in the literature shows excellent agreement. The impact of porosity, heat generation, thermal radiation, magnetic field, viscous dissipation and chemical reaction on the flow field is evaluated and explained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call