Abstract

Analysis of hydromagnetic flow of a dusty fluid over a stretching sheet is carried out with a view to throw adequate light on the effects of fluid-particle interaction, particle loading, and suction on the flow characteristics. The equations of motion are reduced to coupled non-linear ordinary differential equations by similarity transformations. These coupled non-linear ordinary differential equations are solved numerically on an IBM 4381 with double precession, using a variable order, variable step-size finite-difference method. The numerical solutions are compared with their approximate solutions, obtained by a perturbation technique. For small values of β the exact (numerical) solution is in close agreement with that of the analytical (approximate) solution. It is observed that, even in the presence of a transverse magnetic field and suction, the transverse velocity of both the fluid and particle G phases decreases with an increase in the fluid-particle interaction parameter, β, or the particle-loading parameter, k. Moreover, the particle density is maximum at the surface of the stretching sheet, and the shearing stress increases with an increase in β or k.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.