Abstract

We consider the steady state, viscous, incompressible two-dimensional magneto hydrodynamic flow of an electrically conducting power law fluid over a vertical stretching sheet. The stretching of the surface velocity and the prescribed surface temperature are assumed to vary linearly with the distance from the slit. The coupled partial differential equations governing the flow and heat transfer are transformed into non-linear coupled ordinary differential equations by a similarity transformation. The transformed boundary layer equations are solved numerically by Keller-Box method for several sets of values of the parameters governing the flow and heat transfer. The flow and heat transfer characteristics are analysed and discussed for different values of the parameters. We observe that the local skin friction coefficient and the local Nusselt number decrease as the magnetic parameter Mn increase for fixed value of the buoyancy parameter λ. The results obtained reveal many interesting behaviors that warrant further study of the equations related to non-Newtonian fluid phenomena, especially the shear-thinning phenomena. Shear thinning reduces the wall shear stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call