Abstract
Alveolar bone regeneration has aroused worldwide attention and plays an important role in oral clinics. In recent years, the application of biomaterials to induce osteogenic differentiation of periodontal ligament cells has become the hot topic in the field of alveolar bone regeneration. At present, most existing biomaterials lack osteoinductivity, while extrinsic inducers carry the risk of unwanted side effects. The objective of this work was to study the in vitro functionality of a newly developed hydrolyzed tilapia fish collagen (HFC) for periodontal tissue regeneration. HFC was extracted from the scales of tilapia, human periodontal ligament cells (hPDL cells) were cultured with HFC without the addition of any inducing reagent, and the effects of HFC on cell viability and osteogenic differentiation were investigated. The results revealed that HFC promoted the cell viability of hPDL cells. Furthermore, the upregulation of osteogenic markers ALP, COL I, RUNX2, and OCN at the gene level and the production of osteogenic-related proteins (alkaline phosphatase and osteocalcin) proved the success of osteogenic differentiation of hPDL cells treated with HFC. In addition, we revealed that the effect of HFC was mediated by ERK signaling pathways. Taken together, the data presented in this paper suggested for the first time that HFC is a promising bioactive ingredient for biomaterials used in alveolar bone regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.