Abstract
In 2004 we first reported catalytic nanoparticles, that are able to cleave phosphate diesters with very high efficiency (Angew. Chem. Int Ed, 2004, 43, 6165–6169) and dubbed them “nanozymes” for the similarity of their behavior with natural enzymes, both in terms of efficiency and mechanism of action. Since then the field has impressively expanded and a search on the web of science at the time of submitting this contribution returned almost 1,000 entries. This minireview highlights what has been done in the field focusing specifically on hydrolytic nanozymes, the focal point of the research in our group since its very beginning. Special emphasis is given to the advantage of bringing catalytic units in the confined space of a nanosystem in terms of inducing the cooperation between them, favoring the interaction with substrates, and altering the local environment. We will try to answer to questions like: why can a lipophilic substrate be transformed by these catalysts even in an aqueous environment? Why may the pH in the catalytic loci of the nanosystem be different from that of the bulk solution even in the presence of buffers? Why are most of these nanosystems better than monovalent ones?
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.