Abstract

This paper aimed to screen the enzymatic activities and evaluate the carotenoid production level of twenty-two halophilic archaea isolated from Sfax solar saltern sediments. The molecular identification performed by sequencing the 16S rRNA genes showed that all strains have a high similarity degree (99.7-100%) with Halobacterium salinarum NRC-1. The strains were screened for the presence of eight hydrolase activities using agar plate-based assays. The most detected enzyme was gelatinase (77.27% of total strains), followed by protease (63.63%) and amylase activities (50%). The carotenoid production yields of the strains ranged between 2.027 and 14.880mg/l. The UV-Visible spectroscopy of pigments revealed that it was a bacterioruberin type. When evaluated and compared to the standard β-carotene, the antioxidant capacities of these pigments showed a scavenging activity of more than 75% at a concentration of 5μg/ml for three strains (AS16, AS17, and AS18). Then a sequence of one-step optimization processes was performed, using the one-factor-at-a-time approach, to define the optimum conditions for growth and carotenoid production of the highest carotenoid producing strain (AS17). Different environmental factors and nutritional conditions were tested. Variations in these factors were found to deeply influence growth and carotenoid production. A maximum carotenoid production (16.490mg/l), higher than that of the control (14.880mg/l), was observed at 37°C, pH 7, 250g/l of salinity, with 80% air phase in the flask at 110rpm, in presence of light and in culture media containing (g/l) 10, yeast extract; 7.5, casamino acid; 20, MgSO4; 4, KCl; and 3, trisodium citrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call