Abstract

Poly(amidoamine) dendrimers-modified reduced graphene oxide nanosheets (PAMAM/rGO) composite was selected as a carrier of heterogeneous Ag0.3Co0.7 nanoparticles in order to obtain an excellent catalyst for ammonia borane (AB) hydrolysis. During the synthetic processes, GO could easily assembled with PAMAM by the electrostatic and hydrogen-bonding interactions. Structural characterization revealed that Ag0.3Co0.7 bimetallic nanoparticles with uniform size distribution of 5nm are well dispersed on PAMAM/rGO composite architecture. Ag0.3Co0.7@PAMAM/rGO was found to be a highly active and reusable catalyst in hydrogen generation from the hydrolysis of AB with a turnover frequency value (TOF) of 19.79 molH2min–1molM–1 at 25.0±0.1°C and retained 75.4% of their initial activity with a complete release of hydrogen in five runs. The relatively high TOF value and low apparent activation energy (34.21kJmol–1) make these Ag0.3Co0.7@PAMAM/rGO NPs as a high-efficient catalyst for catalytic dehydrogenation of AB facilitating the development of practically applicable energy storage materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.