Abstract

“Linear” 1-arm and 2-arm poly( dl-lactide) [i.e., poly( dl-lactic acid), or PDLLA] polymers with relatively low number-average molecular weights ( M n in the range 0.2–6 × 10 4 g mol −1) were synthesized using ring-opening polymerization of dl-lactide initiated with tin(II) 2-ethylhexanoate (i.e., stannous octoate) and coinitiators of dl-lactic acid and ethylene glycol (these PDLLA polymers are hereafter abbreviated as 1-DL and 2-DL, respectively). Their glass-transition properties were monitored by differential scanning calorimetry, and their hydrolytic degradation was investigated using gravimetry and gel permeation chromatography. The results of the present study indicate that the coinitiator-induced molecular structural difference of the terminal groups, the chain directional change, the incorporated coinitiator moiety as an impurity in the middle of the molecule, and the molecular weight each affect both the hydrolytic degradation behavior and rate, and the glass-transition properties of the “linear” 1-DLs and 2-DLs. The glass-transition temperature ( T g) values were higher for the 2-DLs than for the 1-DLs, indicating low chain mobility and a strong inter-chain interaction of 2-arm PDLLA. However, the coinitiator-induced molecular structural difference did not produce a difference in the excess free volume of the end groups between the 1-DLs and 2-DLs, despite the difference produced in the terminal groups. On the other hand, although the hydrolytic degradation of the 1-DLs and 2-DLs proceeds via bulk erosion, significant surface erosion also occurs in the 2-DLs. This should have caused a larger weight loss and lower decrease rate of M n of the 2-DLs compared to those of the 1-DLs. Moreover, the results of the present study indicate that in 2-arm PDLLA selective chain cleavage at the terminal ester groups or second ester groups from the chain terminals, which are induced by two terminal hydroxyl groups, is the significant hydrolytic degradation route. However, the random cleavage of ester groups, irrespective of their position, is the main hydrolytic degradation route.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call