Abstract

Homogeneous adenine deaminases (EC 3.5.4.2) from the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe and a putative ADA (adenosine deaminase; EC 3.5.4.4) from Arabidopsis thaliana were obtained for the first time as purified recombinant proteins by molecular cloning of the corresponding genes and their overexpression in Escherichia coli. The enzymes showed comparable molecular properties with well-known mammalian ADAs, but exhibited much lower k(cat) values. Adenine was the most favoured substrate for the yeast enzymes, whereas the plant enzyme showed only very low activities with either adenine, adenosine, AMP or ATP. Interestingly, the yeast enzymes also hydrolysed N6-substituted adenines from cytokinins, a group of plant hormones, cleaving them to inosine and the corresponding side chain amine. The hydrolytic cleavage of synthetic cytokinin 2,6-di-substituted analogues that are used in cancer therapy, such as olomoucine, roscovitine and bohemine, was subsequently shown for a reference sample of human ADA1. ADA1, however, showed a different reaction mechanism to that of the yeast enzymes, hydrolysing the compounds to an adenine derivative and a side chain alcohol. The reaction products were identified using reference compounds on HPLC coupled to UV and Q-TOF (quadrupole-time-of-flight) detectors.The ADA1 activity may constitute the debenzylation metabolic route already described for bohemine and, as a consequence, it may compromise the physiological or therapeutic effects of exogenously applied cytokinin derivatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.