Abstract

In this study, Ru(II)-arene complexes with acylthiourea ligands of the type [Ru(η6‑p‑cymene)(PPh3)(T)Cl]PF6(1–5) and [Ru(η6‑p‑cymene)(PPh3)(T)]PF6(1a, 4a), where PPh3 = triphenylphosphine and T = N‑acyl‑N′(monosubstituted)thiourea, were synthesized and characterized, and their cytotoxic properties were also evaluated. 1a and 4a were obtained from the hydrolysis reaction of 1 and 4. All complexes showed unusual coordination modes for acylthiourea ligands, which are coordinated in a monodentate fashion (S) in 1–5, while they found to be bidentate (S,N), in 1a and 4a. To the best of our knowledge, 1a and 4a are the first crystallographically reported ruthenium compounds with acylthiourea coordinated via S and N(amide) atoms. The cytotoxicity of the compounds was evaluated in human lung cells, A549 and MRC-5. The IC50 values ranging from 0.25 to 0.61 μM after 48 h incubation in lung cancer cells indicate that the compounds showed high cytotoxicity with values significantly lower than the reference drug, cisplatin (11.84 μM). Interaction studies were carried out using human serum albumin (HSA) and DNA. All complexes showed similar cytotoxic activity, however complex 1a, which is the hydrolysis product of 1, presented the highest activity and selectivity among all seven compounds synthesized here. Complexes 1 and 1a inhibited the colony formation decreasing the colony size and inducing morphology changes in A549 cells. These complexes induced apoptosis cell death and promoted cell cycle arrest in the Sub-G1 phase with a decrease in the cell number at the S phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call