Abstract

Understanding the hydrolysis behavior and pathway of norfloxacin (NOR) in the hyporheic zone (HZ) is important for predicting its environmental persistence. Therefore, the effects of different environmental factors on NOR hydrolysis were investigated, and the hydrolysis pathway of NOR in the HZ was determined by DFT calculations and UPLC/TOF-MS. The hydrolysis process of NOR was consistent with the first-order kinetic. The experiment of environmental factors showed that DO was an important factor to affect NOR hydrolysis, and its hydrolysis rate was positively correlated with DO concentration. The superoxide radical (·O2-) was the main active species for NOR hydrolysis. The hydrolysis rates of NOR under neutral and alkaline conditions were higher than that under acidic conditions in both aerobic and anoxic environments. The ions of Ca2+, Mg2+, HCO3-, CO32-, and NO3- in simulated water samples inhibited the hydrolysis of NOR, while Cl- promoted its hydrolysis. In addition, the electronegativity of NOR was determined by DFT calculations, and it was speculated that the active sites of NOR hydrolysis were mainly located in the piperazine ring and quinolone ring. The main hydrolysis pathway of NOR in aerobic environment was piperazine ring cracking and quinolone ring decomposition, and that in anoxic environment was piperazine ring cracking. The results are of great significance to evaluate the environmental fate of NOR in the HZ and provide a theoretical basis for further understanding the degradation and governance of fluoroquinolones in water environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.