Abstract

Various methods for the preparation of inorganic nanosheets have been established and they have contributed to the substantial development of the research on diverse two-dimensional materials. Covalent surface modification of layered metal hydroxides with alkoxy groups is known to effectively weaken the interactions between layers, although the modified ligands are irreversibly immobilized. This study proposes the use of methanol as a removable surface modifier forming monodentate alkoxy bonds to prepare nickel hydroxide nanosheets through hydrolysis. Methoxylated layered nickel hydroxide, consisting of randomly stacked nano-sized nickel hydroxide sheets (10-20 nm in size) having Ni-OCH3 groups on its surface, was synthesized in a powder form through the precipitation reaction of a nickel salt in methanol at room temperature. After dispersing the aggregated methoxylated nickel hydroxide in water, single-layer nickel hydroxide nanosheets with a thickness of 1.2 nm and a lateral size of 460 nm at maximum, which is larger than the size of original methoxylated nickel hydroxide were found in the suspension. The time-course experiments during hydrolysis suggested that two-dimensional crystal growth of exfoliated nickel hydroxide sheets proceeded, resulting in the formation of the nanosheets. Moreover, single-layer and nano-sized cobalt hydroxide was prepared through a similar manner. This work demonstrates that two-dimensional alkoxides consisting of polymeric M-O-M bonds are useful precursors for the design of metal-hydroxide-based nanomaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.