Abstract

beta-galactosidase from Aspergillus Oryzae immobilized in a spiral flow reactor was used to effect the hydrolysis of the lactose component of skim milk. Residence time distribution measurements were used to assess the amount of longitudinal dispersion occurring as a consequence of the spiral flow pattern and the semiporous nature of the polymeric material used to construct the spiral. It was possible to model the flow conditions as tubular flow with a Peclet number that was a linear function of the reactor space time. Nonlinear regression methods were used to determine the kinetic parameters of three proposed enzymatic rate expressions. The best fit of the data was obtained using a rate expression containing separate terms for competitive inhibition of the reaction by both the a and beta anomers of galactose. This kinetic model also incorporates the kinetics of the mutarotation between these forms. At 30 degrees C and a space time of 7 minutes, 80% of the lactose present in skim milk can be converted to glucose and galactose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.