Abstract

Dimethyl methylphosphonate (DMMP) is often used as a chemical surrogate for organophosphate nerve agents, as it exhibits similar physiochemical properties while having significantly lower toxicity. Continuous hydrolysis of DMMP in hot-compressed water is performed at temperatures from 200 to 300 °C, pressures of 20 and 30 MPa, and residence times from 30 to 80 s to evaluate the effects of pressure and temperature on reaction kinetics. DMMP hydrolysis is observed to follow pseudo-first-order reaction behavior, producing methylphosphonic acid and methanol as the only detectable reaction products. This is significant for the practical implementation of a continuous hydrothermal reactor for chemical warfare agent neutralization, as the process only yields stable, less-toxic compounds. Pressure has no discernible effect on the hydrolysis rate in compressed liquid water. Pseudo-first-order Arrhenius parameters are determined, with an activation energy of 90.17 ± 5.68 kJ/mol and a pre-exponential factor of 107.51±0.58 s-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.